martes, diciembre 20, 2011

NGC 253, la galaxia del Escultor


NGC 253 no es sólo una de las galaxias espirales más brillantes del cielo terrestre, sino también una de las más polvorientas (clic en la imagen para ampliarla a 900 x 647 píxeles o verla aún más grande).

Fue descubierta en 1783 por Caroline Herschel en la constelación del Escultor. La galaxia del Escultor, como también se conoce a NGC 253, se encuentra aproximadamente a sólo diez millones de años-luz de la Tierra.

NGC 253 (en la imagen de la derecha) es el miembro más grande del Grupo galáctico del Escultor, la agrupación más cercana al Grupo Local de galaxias, al que pertenece la Vía Láctea.

En la imagen mostrada arriba se distingue claramente el núcleo central activo de NGC 253.

Como el polvo denso y oscuro se asocia con una tasa muy alta de formación estelar, NGC 253 está clasificada como una starburst galaxy, es decir, una galaxia con un aumento repentino e intenso en la formación de estrellas.

También es una poderosa fuente de rayos X (*) y gamma de gran energía, probablemente debido a la presencia de agujeros negros masivos en las proximidades del centro de la galaxia.

NGC 253 en rayos X. Una ampliación de la región central de NGC 253, obtenida por el Observatorio de rayos X Chandra, revela detalles no visibles en radiación óptica, señalados en el recuadro. En la imagen en falso color las nubes de gas resplandecen en rayos X cerca del núcleo y por lo menos cuatro fuentes de rayos X muy poderosas se encuentran dentro de un radio de 3 mil años-luz del centro de la galaxia. Es muy probable que estas fuentes extremas de rayos X se estén acercando al centro de NGC 253: como resultado se formará un supermasivo agujero negro central y sus núcleos se transformarán en cuasares (clic en la imagen para ampliarla). Más información (en inglés).

Vía Foto astronómica del día correspondiente al 20 de diciembre de 2011. Esta página ofrece todos los días una imagen o fotografía del universo, junto con una breve explicación escrita por un astrónomo profesional. Crédito de la imagen y copyright: Angus Lau.


(*) Rayos X: otra forma de luz

En 1895 el físico alemán Wilhelm Roentgen descubrió una nueva forma de radiación. La llamó radiación X para denotar su naturaleza desconocida. Esta radiación misteriosa tenía la capacidad de pasar a través de muchos materiales que absorben la luz visible. Los rayos X también tienen la capacidad de arrancar los electrones que se encuentran en los orbitales exteriores de los átomos. Desde su descubrimiento, estas propiedades excepcionales de los rayos X han sido de gran utilidad en muchos campos, como la medicina y la investigación de la naturaleza del átomo.

Ulteriormente se descubrió que los rayos X eran otra forma de luz. La luz es el resultado de la constante agitación y vibración de la materia.

Tal como un perrito juguetón, la materia no puede quedarse quieta. La silla en la que están sentados puede parecer inmóvil y sentirse de esa manera. Pero si pudiésemos observar el comportamiento de la materia en el nivel atómico, veríamos que los átomos y las moléculas vibran a cientos de billones de veces por segundo, chocando unas con otras, mientras que los electrones se mueven a velocidades que rozan el millón de kilómetros por hora.

Cuando las partículas cargadas chocan –o experimentan cambios bruscos en su movimiento— se generan paquetes de energía, llamados fotones, que se alejan de la escena del accidente a la velocidad de la luz (en la imagen de la derecha). De hecho, son luz o, para utilizar el término técnico, radiación electromagnética. Puesto que los electrones son las partículas cargadas conocidas más ligeras, son también las partículas más movedizas y, por lo tanto, las responsables de la producción de la mayor parte de los fotones del universo.

La luz puede tomar muchas formas: ondas de radio, microondas, infrarroja, visible u óptica, ultravioleta, rayos X y radiación gamma. Todas estas ondas son diferentes formas de luz.

La energía del fotón establece de qué clase de luz se trata. Las ondas de radio se componen de fotones de baja energía. Los fotones ópticos —los únicos fotones que podemos ver— son un millón de veces más energéticos que el típico fotón de radio. La energía de los fotones de los rayos X es desde cientos hasta miles de veces más elevada que la energía de los fotones ópticos.


El espectro electromagnético. La longitud de onda de la radiación producida por un objeto se relaciona generalmente con su temperatura (clic en la imagen para ampliarla).

La velocidad de las partículas cuando chocan o vibran impone un límite a la energía del fotón. La velocidad es también una medida de la temperatura. De esta manera, las partículas del aire se mueven en un día cálido a mayor velocidad que en un día frío.

Las temperaturas muy bajas (centenares de grados por debajo de cero) producen fotones de radio de baja energía y microondas, mientras que los cuerpos fríos como los nuestros (cerca de 37 grados centígrados) generan radiación infrarroja. Las temperaturas muy altas (millones de grados centígrados) generan rayos X. Más información (en inglés).


Nota: Síganme en Twitter (@astrosofista) para saber más sobre el universo y mi mundo. Desde que comencé a tuitear en marzo de 2011, más de 3700 tuits ilustran y amplían las 250 entradas publicadas en el blog desde entonces. ¿Qué esperan para unirse a esta gran conversación?